¹⁴N AND ¹³C NMR OF TAUTOMERIC SYSTEMS OF HYDROXY-PYRIDINES

LECH STEFANIAK*

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland

(Received in UK 10 November 1975; Accepted for publication 9 December 1975)

Abstract—¹⁴N NMR is shown to be an efficient method of investigation of the tautomeric equilibria in hydroxy-and related substituted pyridines. Large relative ¹⁴N chemical shifts within tautomeric pairs estimated from N-Me and O-Me derivatives make possible quantitative determinations of the equilibria. Qualitative conclusions may be drawn from ¹⁴N line widths as well as from ¹³C and proton chemical shifts.

INTRODUCTION

Numerous methods have so far been employed for investigating the tautomeric equilibria in aza-aromatic ring systems. These involve UV and IR spectroscopy, X-ray methods dipole moments, basicity determination and proton NMR, and have been reviewed in detail by Katritzky and Lagowski.¹ Only qualitative estimations of the equilibrium constants were possible in these studies as well as in the more recent proton,^{2,3,13}C^{3,4} and ¹⁴N⁵ NMR studies. However, the preliminary measurement of nitrogen chemical shifts⁶⁶ indicated that the method may be well-suited to quantitative determinations.

RESULTS AND DISCUSSION

Usually large changes in nitrogen nuclear screening constants are observed upon tautomeric changes which directly involve N atoms. Since in most cases of such tautomeric equilibria the observed chemical shift is a weighted average of those of the individual tautomeric forms, it is necessary to obtain reasonable accurate estimates of the latter for quantitative determinations of the equilibria. One method employs measurements for model molecules where tautomerism has been made impossible by replacing H atoms with blocking groups (e.g. Me groups) and the estimation of corrections for the shifts resulting from such substitutions. The other approach is based on calculations of the shifts by empirical and theoretical methods and must be based on a considerable amount of experimental data that show good correlations with empirical additivity rules or nuclear screening constants calculated by various theoretical methods. Both of these approaches introduce uncertainties due to arbitrary assumptions which may critically affect the validity of quantitative estimations. However the former has a definite advantage if the tautomeric shifts are sufficiently large compared with the maximum reasonable limits of corrections for the shifts resulting from the Me substitution.

This is the case with the tautomeric equilibria exhibited by the hydroxy-pyridines. The data contained in Table 1 for N-Me and O-Me derivatives indicate that a difference of about 100-150 ppm in the screening constant for nitrogen is involved in a tautomeric shift of the type

2- 3- 4- 2- 3- 4- H-Methyl-2- or Neat +215±3 - - 450±30 - - 4-pyridone and Acetone 1:1 V/V +215±3 - - 450±30 - - M-methyl-3- Acetone 1:3 V/V +213±2 - +248±3 160±10 - 3500 N-methyl-3- Acetone 1:3 V/V +213±2 - +247±2 130±10 - 3000 oxpyrridyl Methanol 1:1 V/V +213±2 +182±2 +239±3 200±15 75±3 4000 betaine Methanol 1:3 V/V +213±1 +179±1 +238±3 160±10 35±1 220 Methanol:Acetone - +160±1 - - - 36±1 - Hr0mstr - - - - - 36±1 -	Company	Solvent	Chemical shift	in ppm referred	to CH31102	Half-height	width in Hs	
H-Methyl-2- or Neat +215±3 - - 450±30 - - 4-pyridone and Acetone 1:1 V/V +213±2 - +248±3 160±10 - 350 N-methyl-3- Acetone 1:3 V/V +213±2 - +247±2 130±10 - 300 oxypyridyl Methanol 1:1 V/V +213±2 +182±2 +239±3 200±15 75±3 4000 betaine Methanol 1:3 V/V +213±1 +179±1 +238±3 160±10 35±1 2200±15 Methanol:Acetone - +160±1 - - - 36±1 - Hydraxy- - - 160±10 35±1 2200±15 - - Hydraxy- - - - - - - - -	compound	Ъ¢	2-	3-	4-	2-) –	4
4-pyridone and Acetone 1:1 V/V +213±2 - +248±3 160±10 - 350; N-methyl-3- Acetone 1:3 V/V +215±2 - +247±2 130±10 - 300; oxypyridyl Methanol 1:1 V/V +213±2 +182±2 +239±3 200±15 75±3 400; betaine Methanol 1:3 V/V +213±1 +179±1 +238±3 160±10 35±1 220; Methanol:Acetone - +180±1 - - 36±1 - Hydraxy- - - 160±10 35±1 220; Hydraxy- - - - 36±1 -	-Methyl-2- or	-2- or Neat	+215±3	-	-	450±30	-	-
N-methyl-3- Acetone 1:3 \(\not \not \not \not \not \not \not \not	-pyridone and	ne and Acetone 1:1 V/V	+21 3+2	-	+248 <u>+</u> 3	160±10	-	350±30
oxypyridyl Methanol 1:1 V/V +213±2 +182±2 +239±3 200±15 75±3 400; betaine Methanol 1:3 V/V +213±1 +179±1 +238±3 160±10 35±1 220; Methanol:Accetone - +160±1 - - 36±1 - Hydroxy- - - 160±10 - - 36±1 -	f-methyl-3-	-3- Acetone 1:3 V/1	+215 <u>+</u> 2	**	+247 <u>+</u> 2	1 30 <u>+</u> 10	-	300 <u>+</u> 25
betaine Methanol 1:3 V/V +213±1 +179±1 +238±3 160±10 35±1 220; Methanol:Accetone - +160±1 - - 36±1 - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - 36±1 - - - 36±1 - - - 36±1 - - - 36±1 - - - - - 36±1 - - - - 36±1 - - - - - - - - - - - - <td>xypyridyl </td> <td>yl Nethanol 1:1 V/</td> <td>+213+2</td> <td>+182<u>+</u>2</td> <td>+239<u>±</u>3</td> <td>200<u>+</u>15</td> <td>75±3</td> <td>400±30</td>	xypyridyl	yl Nethanol 1:1 V/	+213+2	+182 <u>+</u> 2	+239 <u>±</u> 3	200 <u>+</u> 15	75±3	400±30
Hethanol:Acetone - +180 \pm 1 $36\pm$ 1	etaine	Nethanol 1:3 V/	+213±1	+179 <u>+</u> 1	+238±3	160±10	35 <u>±</u> 1	220 ±2 0
	þ	Methanol:Acetoz 1:1:2 V/V	-	+180 <u>+</u> 1	-	-	36 <u>±</u> 1	-
Acetone 1:3 V/V +208±2 +65±4° +221±4° 150±10 500±50° 300±	lydroxy-	Acetone 1:3 V/N	+208 <u>+</u> 2	+66 <u>+</u> 4 ^b	+221 <u>+</u> + ^b	1 50± 10	500±50 ^b	300±30 ^b
pyridine, Nethanal 1:1 V/V +211+3 ~ ~ 280+20 -	yridine,	Methanal 1:1 V/	+211±3	•	-	280 +20	-	-
pyridone or Nethanol 1:3 V/V +210±2 +69±4 +225±3 180±10 700±60 350;	yridone or	or Nethanol 1:3 V/	+210+2	+69 <u>+</u> 4	+225 <u>+</u> 3	180±10	700 <u>+</u> 60	350±30
Detaine Hethanol:Acctone - +68+4 600+60	etaine	Methanol:Acetor 1:1:2 V/V	-	+68 <u>+</u> 4	-	-	600 <u>+</u> 60	-
Hethoxy- Heat +109±3 +60±3 +89±4 360±30 700±30 1000	iethoxy- 1	Heat	+109 <u>+</u> 3	+60+3	+89 <u>+</u> 4	360 <u>+</u> 30	700+50	1000+100
pyridine Acetone 1:1 V/V +11242 +62+3 +91+4 280+20 320+30 600	yridine J	Acetone 1:1 V/V	+112+2	+62±3	+91+4	280+20	320±30	600±50
Acetone 1:3 V/V +110±2 +63±3 +90±3 260±20 290±20 450	1	Acetone 1:3 V/V	+1 10 <u>+</u> 2	+63 <u>+</u> 3	+90±3	260+20	290 ±20	450±30
Nethanol 1:1 V/V +113±3 +64±4 +92±4 350±30 700±50 1000;	1	Nethanol 1:1 V/	+113±3	+64 <u>+</u> 4	+92±*	350±30	700 <u>+</u> 50	1000 <u>+</u> 100
Methanol 1:3 V/V +117±2 +65±4 +93±4 320±20 660±40 950	د	Methanol 1:3 V/	+117±2	+65 <u>+</u> 4	+93 <u>+</u> 4	320±20	660±40	950±80
Methanol:Asetons - +63±4 600±40 -	2	Methanol:Acetor 1:1:2 V/V	-	+63 <u>+</u> 4	-	-	600 <u>+</u> 40	-

Table 1. ¹⁴N NMR of hydroxy-pyridine derivatives

a - Positive sign corresponds to a high field shift; b - Saturated solution in acctone.

So far, large shifts in such systems have been expected on the basis of preliminary ¹⁴N measurements for 2-, 3- and 4-hydroxypyridines⁶ but some of the data show appreciable experimental errors as compared with the measurements carried out in the present work and do not contain any information on the shifts of N-Me derivatives. If the averaged nitrogen chemical shift of the tautomeric equilibrium systems (δ_T) is measured together with those for the corresponding N-Me or O-Me derivatives (δ_{NMe} and δ_{OMe} , respectively) and if corrections for NMe \rightarrow NH and OMe \rightarrow OH substitutions (Δ_{NH} and Δ_{OH} , respectively) may be estimated then the mole fraction of the pyridine-type tautomer X is:

$$X = \frac{\delta_{\rm NMc} + \Delta_{\rm NH} - \delta_{\rm T}}{\delta_{\rm NMe} + \Delta_{\rm NH} - \delta_{\rm OMe} - \Delta_{\rm OH}}$$
(1)

The NMe \rightarrow NH shift for 2- and 4-pyridines may be estimated from the shifts for amides⁵

in acetone, referred to nitromethane in ppm

HCONH ₂	+ 274
HCONHMe	+ 272
HCONMe ₂	+ 273

in chloroform, referred to nitromethane in ppm

MeCONH ₂	+ 270
MeCONHMe	+ 269
EtCONH ₂	+ 273
EtCONHMe	+ 270

as about + 1 ppm on the screening constant scale. Since the OMe \rightarrow OH correction results from the substitution at a remote center, its numerical value should be negligible. The NMe \rightarrow NH correction for the betaine tautomer of 3-hydroxypyridine should also be negligible, as can be seen from the ¹⁴N shift measurement reported in the present work in methanol, 1:3 V/V, referred to nitromethane, chemical shifts in ppm and half-height width in Hz, respectively

Pyridinium iodide	$+179 \pm 1$	32 ± 3
N-Methyl pyridinium	$+179 \pm 1$	24 ± 2
iodide		
3-Hydroxy-N-methyl	$+177 \pm 1$	24 ± 2
pyridinium iodide		

The results of ¹⁴N NMR measurements (concentration 1:3 V/V) for hydroxy-pyridine systems (Table 1, eqn 1) gave the following estimates of the tautomeric equilibria in terms of mole fractions:

The uncertainities quoted for the mole fractions are maximum expected deviations calculated on basis of experimental errors (Table 1) and maximum expected errors in the estimation of N-Me and O-Me substitution corrections, ± 1 ppm in each case.

It is interesting that the quadrupolar relaxation times (and line widths) of ¹⁴N exhibit large variations within the isomeric pairs and that the values observed for the tautomeric equilibria are close to those for the isomers which represent the prevailing tautomeric structures in the equilibria.

The ¹³C and ¹H NMR data only give qualitative indications of the positions of the tautomeric equilibria, as may be inferred from the previously reported measurements³ for a complete set of model compounds in DMSO solutions as well as from data obtained in the present work (Table 2) for acetone solutions which were also used for the ¹⁴N measurements.

The relative ¹³C shift differences between the isomeric pairs (N-Me and O-Me derivatives) are not very large (0.9-20.7 ppm) and the shifts for the equilibria between the NH and OH tautomers are frequently found outside the range set by the model compounds. Generally, the shifts for the carbon atoms which are appreciable affected (*ca.* 10-20 ppm) by the tautomeric changes show that the prevailing tautomers are those indicated by the ¹⁴N shifts, but no quantitative conclusions may be drawn. The ¹³C

resonance signals of the corresponding -C = 0 and

=C-OH groups which are characterized by large downfield shifts relative to the remaining ¹³C resonances cannot yield even qualitative information in some cases.

Thus, it seems that nitrogen chemical shifts should be far superior to those of ¹³C and ¹H chemical shifts as a source of information about tautomeric equilibria in aza-aromatic systems bearing hydroxy groups as substituents.

EXPERIMENTAL

The substances investigated were either commercially available products purified by conventional methods (all hydroxy-pyridines) or were prepared according to published procedures: 2-methoxypyridine,⁷ 3-methoxy-pyridine,⁸ 4-methoxy-pyridine,⁸ N-methyl-2pyridone,¹⁰ N-methyl-3-oxypyridyl-betaine¹¹ and N-methyl-4pyridone.¹²

The identity of all substances were checked by means of their proton NMR spectra.

The ¹⁴N NMR spectra were measured at 4.3346 MHz (14.09 kG) and modulated with an audio-frequency of 2002 Hz. The spectrometer used was a Varian HA-60IL model operating at room (28°) temp in the field-sweep HR mode with 15 mm o.d. sample tubes without spinning. Nitromethane was employed as an internal reference compound and the shifts are expressed on the screening-constant scale, i.e. high-field shifts are taken as positive. In order to obtain a good signal-to-noise ratio, which was quite critical in a few cases, the spectra were digitized and transferred to a tape using a KART-2 automatic coordinatograph. In this form,

Table 2. ¹³C NMR of hydroxy-pyridine derivatives

	Chemical shifts ^{&} in ppm referred to tetramethylsilane					Lsilane
	C2	وس	C4	C-5	C6	c ^e ئ
2-Derivatives	<u></u>					
N-46 p	-162.9	-120-4	-140.1	-105+4	-140+1	-37.1
o- ₽°	-165.0	-121.0	-142.3	-106.7	-136.2	-
0-¥€ _p	-164.9	-111+4	-1 39+2	-117.3	-147.7	-53.3
🛆 (Мые-Оме)	+2.0	-9-0	-0.9	+11.9	+7.6	-
3-Derivatives			<u>.</u>			
N-M● ⁰	-133-1	-170.6	-135.7	-127.3	-121.9	-47.3
0-±°	-138.7	-154.9	-123.2	-125.0	-141.2	-
0-4e ^b	-1 38.5	-156.6	-120.5	-124.5	-142.6	-55.7
△ (ЖиеОме)	+5.4	-14.0	-15.2	-2.8	+20.7	-
4-Derivatives			<u> </u>			
n-¥e,p	-142+4	-118.2	-178.3	-118.2	-142.4	-43.3
0-E°	-141.6	-116.7	-176+4	-116.7	-141.6	-
о- н ер	-151+7	-110+6	-166.3	110+6	-151•7	-55.5
🛆 (NNe-OMe)	+9•3	-7.6	-12.0	-7.6	+9.3	-

a - Negative indicates deshielding; b - In acetone 1:3 V/V; c - Saturated

solution in acetone.

they were ready for recalibration and noise-averaging procedures in a computer system and subsequent line-shape fitting procedures. About 10-20 spectra were accumulated in each case to give satisfactory results for the concentrations and line widths involved. The data processing was performed on the ODRA-1204 computing system of the Polish Academy of Sciences.

The carbon and proton NMR spectra were measured in 1:3 V/V or saturated solns of acetone-de with TMS as an internal standard.

The ¹³C NMR spectra were obtained by PFT technique with a Bruker WH-90 spectrometer operating at 22.6364 MHz with a deuterium internal lock and proton noise-decoupling (6 µsec pulses repeated at 0.68 sec, 3000-100000 scans).

REFERENCES

A. R. Katritzky and J. M. Lagowski, Advances in Heterocyclic Chemistry (Edited by A. R. Katritzky), Vol. 1. p. 339. Academic Press, New York (1963).

²P. W. von Ostwalden and J. D. Roberts, J. Org. Chem. 36, 3792 (1971).

- ³V. Vögeli and W. von Philipsborn, Org. Mag. Res. 5, 551 (1973).
- ⁴C. J. Turner and G. W. H. Cheeseman, Ibid. 6, 663 (1974).
- ⁵M. Witanowski, L. Stefaniak and H. Januszewski, Nitrogen NMR (Edited by M. Witanowski and G. A. Webb), pp. 163-260. Plenum Press, London (1973).
- ** D. Herbison-Evans and R. E. Richards, Mol. Phys. 8, 19 (1964); ^b M. Witanowski, L. Stefaniak, H. Januszewski and G. A. Webb, Tetrahedron 27, 3129 (1971).
- ⁷T. B. Grave, J. Am. Chem. Soc. 46, 1466 (1924). ⁶D. A. Prins, Rec. Trav. Chim. 76, 61 (1957).
- ^oH. J. Den Hertog and W. P. Combe, Ibid. 70, 589 (1951).
- ¹⁰E. A. Prill and S. M. McElvain, Org. Synth. Coll. Vol. 2, p. 419. New York (1943).
- "L. Proleni, M. L. Tosato and M. Cignitti, Theoret. Chim. Acta 14, 221 (1969).
- ¹²P. Beak and J. Bonham, J. Am. Chem. Soc. 87, 3368 (1965).